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Abstract—This paper presents a full-wave analysis of the split-
cylinder resonator. We outline a model where the fringing fields
are rigorously accounted for and the resonance condition is de-
rived. Using this model, a method for nondestructively measuring
the complex permittivity of materials is examined. Measurements
of the complex permittivity for low-loss dielectric materials using
the split-cylinder resonator agree well with measurements made
in a cylindrical cavity. An uncertainty analysis for the complex
permittivity is also provided.

Index Terms—Dielectric losses, dielectric measurement, nonde-
structive testing, permittivity measurement, resonators.

I. INTRODUCTION

T HE most precise means of determining the complex
permittivity of low-loss dielectrics are resonator methods.

Commonly used resonator techniques include the dielectric-
post resonator, cylindrical cavity, and the whispering-gallery-
mode method [1]. Although usually limited to a single fre-
quency, these resonant methods provide the needed accuracy
that broad-band methods lack. A disadvantage of these tech-
niques is that samples must be accurately machined into a
symmetrical geometry such as a cylinder. Since sample ma-
chining is destructive and sometimes expensive, conventional
resonator methods are rarely used for large-scale quality-
control purposes.

Kent developed a resonator technique that allows for non-
destructive measurements of complex permittivity [2], [3].
This method, thesplit-cylinder resonatortechnique, uses a
cylindrical cavity, which is separated into two halves, as
shown in Fig. 1. A sample is placed in the gap between
the two shorted cylindrical waveguide sections. A
resonance is excited, and from measurements of the resonant
frequency and the quality factor, one determines the complex
permittivity of the sample. In terms of sample geometry, the
only requirements are that the sample must extend beyond the
diameter of the two cavity sections and the sample must be flat.
This provides the accuracy of a resonator technique without
having to machine the sample.

Unfortunately, having little or no sample preparation comes
at the cost of needing a more comprehensive model for the
split-cylinder resonator. In conventional resonator methods,
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Fig. 1. Cross-sectional diagram of a split-cylinder resonator.

the boundary-value problem is relatively straightforward since
the electric and magnetic fields are confined to the sample
or within a metallic cavity. However, for the split-cylinder
resonator, a gap exists between the two cylindrical waveguide
sections, and the electric and magnetic fields extend into the
sample outside of the cylindrical waveguide regions.

Kent, in his original model [2], correctly recognized that
neglecting the fields in the region of the sample outside of
the waveguide sections would lead to a systematic error in the
measured permittivity. He initially proposed a correction to
the measured permittivity based on a perturbation calculation.
Later, Kent and Bell developed an improved approximation to
correct the initial model [4].

In contrast, this paper presents a full-wave analysis of the
split-cylinder resonator, derived in Section II. In our model,
we assume that the fields are confined to regions of the
cylindrical waveguide and sample. We also assume the sample
is infinite in the radial direction. The model includes the

resonant mode plus evanescent modes in the
cylindrical waveguide regions. These modes must be included
to properly satisfy the boundary conditions at the boundaries
between the sample and waveguides. To derive the resonance
condition, we applied a Hankel transform with respect to the
radial coordinate, reducing the problem to one dimension [5],
[6]. We calculated the complex permittivity of several low-
loss ceramic materials from measured data. For comparison,
we measured the same samples in a conventional cylindrical
cavity. Finally, we identify the largest sources of error in the
complex permittivity measurement and perform an uncertainty
analysis.
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II. DERIVATION OF THE RESONANCE CONDITION

A. Transverse Fields in the Upper Cavity Region

From the symmetry of the split-cylinder resonator and the
assumption that we are exciting only modes, the electric
field in the upper cavity region has only a-component of the
form

(1)

where is a constant, is a radial eigenfunction, and
is a longitudinal function. If we substitute (1) into the

vector wave equation

(2)

we obtain

(3)

where , is the separation constant, is
the radial frequency, and is the relative permittivity of the
air within the cylindrical cavity section. Note that we have
assumed a time dependence of . We use the method
of separation of variables to solve for and .
Applying this method to (3), we find

(4)

where , , , and are constants, is the Bessel
function of the first kind of order one, is the Bessel function
of the second kind of order one, and . The
boundary conditions on the transverse electric field yield

(5)

is finite is finite (6)

(7)

It follows that

(8)

(9)

(10)

where is the th zero of , and (4) reduces to

(11)

where

(12)

From the differential form of Faraday’s law

(13)

and (11) we find the -component of the magnetic field

(14)

In order to find expressions for , we orthonormalize the
radial eigenfunctions . Substituting (12) into the orthonor-
malization condition

(15)

we find

(16)

where is the Bessel function of the first kind of order zero.
To reduce the number of coordinates from two to one, we

take the Hankel transforms of and of
with respect to . The Hankel transform of a function
is defined as

(17)

and the inverse Hankel transform is

(18)

The Hankel transforms of (11) and (14) are

(19)

and

(20)

where

(21)

We perform this integration exactly by substituting (12) and
(16) into (21) as follows:

(22)
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B. Transverse Fields in the Lower Cavity Region

As a result of symmetry, the transverse fields in the lower
cavity region are

(23)

(24)

C. Transverse Fields in the Sample Region

In our model, we assume that the sample is infinite in the ra-
dial direction and that the magnetic and electric fields can exist
anywhere along the sample. However, we assume a conductive
ground plane above and below the sample in the region outside
the cylindrical waveguide sections. Therefore, any electric or
magnetic fields outside the cylindrical waveguide regions must
be confined to the sample.

In the sample region, as in the cavity regions, only
modes are considered. Therefore, the vector wave equation (2)
is also satisfied in the sample region as follows:

(25)

Taking the Hankel transform of (25) and integrating by parts
twice, we get

(26)

where , is the relative permittivity
of the sample, and and are coefficients. The split-cylinder
resonator symmetry requires that

(27)

must hold for all , and (26) simplifies to

(28)

Again, using (13), we determine the transverse magnetic field

(29)

D. Resonance Condition

In order to derive the resonance condition, we match bound-
ary conditions. The tangential electric and magnetic fields are
continuous at

(30)

(31)

Substituting the transformed electric and magnetic fields into
(30)–(31), we find

(32)

(33)

If we take the inverse Hankel transform of (33) with respect
to

(34)

Multiplying both sides of (34) by and integrating over
the interval

(35)

Using (32), we solve for as follows:

(36)

Substituting (36) into (35), we find

(37)

where

(38)

and is a column vector of the coefficients . The linear
system of equations (37) has a nontrivial solution only if

(39)

which is the resonance condition. Given the measured resonant
frequency, (39) yields the relative permittivity of the sample.

III. FRINGING FIELDS IN THE SAMPLE REGION

In the previous section, we derived an expression for
the electric and magnetic fields in the sample region. In
the model, we assumed that the sample was infinite in the
radial coordinate and that the fields existed anywhere along
the sample. However, since we measure samples with finite
diameters, it is important to understand how large the sample
diameter must be in order for the assumption of an infinite
sample to be valid. Toward this end, we computed the electric
field in the sample region. We begin with the transformed
electric field (28). Substituting (36) for into (28)

(40)
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Fig. 2. The magnitude of the normalized electric fieldE� (�; z = 0) as a
function of� for various values of sample thicknessd. The sample permittivity
�0rs is ten. The electric field extends beyond the cylindrical waveguide radius
and the amount of fringing fields increases as the sample thickness increases.

Taking the inverse Hankel transform of (40), we get

(41)

Using (41), we computed the normalized electric field in the
middle of the sample as a function of , sample
thickness, and sample relative permittivity.

Fig. 2 shows the magnitude of the normalized electric field
as a function of and sample thickness for a sample whose
relative permittivity is ten. In calculating the electric field, we
used a numerical routine that normalized the first coefficient

to one. The results show that some of the electric field in
the sample protrudes beyond the cylindrical waveguide radius,
especially as the thickness of the sample becomes large. This is
consistent with our intuition that the fields in the sample region
outside of the cylindrical waveguide are significant. However,
the graph also shows that the electric field is negligible when

is approximately 30 mm. Thus, for this cavity, whose radius
is approximately 19 mm, we can assume that the sample is
infinite in the radial direction in the model without introducing
any systematic error if the sample radius is 30 mm and larger.

Fig. 3 shows the magnitude of the normalized electric field
as a function of and sample relative permittivity for a
sample whose thickness is 2.5 mm. This also shows that for a
wide range of sample relative permittivities, there exists some
electric field in the sample beyond the cylindrical waveguide
radius. For the various sample permittivities, the value of the
normalized electric field at the cavity radius was between
7%–8% of the peak normalized electric field, a value which
is not negligible. As was the case in Fig. 2, the electric field
is also negligible at values of larger than 30 mm.

IV. COMPLEX PERMITTIVITY MEASUREMENTS

We applied the split-cylinder resonator method to determine
the complex permittivity of four low-loss ceramic samples.

Fig. 3. The magnitude of the normalized electric fieldE� (�; z = 0) as
a function of� for various values of sample relative permittivity�0rs. The
sample thickness is 2.5 mm. For all cases, the electric field extends beyond
the cylindrical waveguide radius.

TABLE I
CALCULATED SAMPLE RELATIVE PERMITTIVITY AS A FUNCTION OF THENUMBER OF

TE0n MODES INCLUDED IN THE MODEL

Each sample, approximately 3–5-mm thick with a 60-mm
diameter, was placed between the two waveguide sections of
the split-cylinder resonator and the resonance curve for the

mode was examined on an automatic network analyzer.
An example of a typical resonance is shown in Fig. 4. From
the resonance curve, we obtained the resonance frequency
and the quality factor .

In order to determine the real part of the sample permittivity
, we use the resonance condition

(42)

If the sample length, cavity diameter and length, and the
resonant frequency are known, the sample permittivity
is the only unknown in (42). However, we cannot solve for

explicitly, thus, we employ the Newton–Raphson method
to iteratively solve for . Although the Newton–Raphson
method requires an initial guess, good convergence occurred
even when the initial guess deviated 50% from the sample
permittivity for the samples we considered.
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TABLE II
PERMITTIVITY RESULTS FORFOUR LOW-LOSS DIELECTRIC SAMPLES. THE SAMPLES WERE MEASURED USING BOTH THE SPLIT-CYLINDER

RESONATOR AND THE CYLINDRICAL CAVITY . FOR THE SPLIT-CYLINDER RESONATOR, WE SHOW PERMITTIVITY RESULTS USING THE

NEW THEORY AND THE THEORY DEVELOPED BY KENT. THE TABLE ALSO SHOWS A COMPARISON BETWEEN SPLIT-CYLINDER

RESONATOR AND CYLINDRICAL CAVITY MEASUREMENTS INCLUDING THE COMBINED STANDARD UNCERTAINTIES IN �
0

rs

Fig. 4. Typical resonance curve for the split-cylinder resonator.

The theoretical model assumes an infinite number of evanes-
cent modes in the cylindrical waveguide regions of the
split-cylinder resonator. Practically, we can use only a finite
number of modes. Table I shows permittivity results
for the four samples as a function of the number of
modes used in the model. For all four samples considered,
convergence in is achieved with eight modes in the model.

In order to verify the accuracy of the split-cylinder measure-
ments, we measured the same four samples in a cylindrical
resonator [7]. Although the measurements in the cylindrical
cavity occur at a slighter higher frequency, the samples are
low-loss and the permittivity should be nearly the same.
Table II shows good agreement in between the two res-
onator methods as both measurements of lie within the
uncertainty bound of the other.

Table II also shows a comparison between the calculated
permittivity of the four samples using both the new split-
cylinder theory and the theory developed by Kent [4]. The
results using Kent’s theory show a consistent downward bias

in the calculation of the sample permittivity. This discrep-
ancy is most likely due to the approximations Kent made in
determining the fringing fields in the sample.

Before we can discuss the measurement of the sample loss
tangent , we must examine the definition of the quality
factor

(43)

where and are the average energy stored in the
cavity sections and sample, and , , and are the
power dissipated per second in the cavity walls, coupling
loops, and sample. To evaluate eachand term requires
complicated integrations, thus, we make several simplifying
approximations. First, as seen in Table IV, the resonance is
coupled at a low level, normally below 50 dB. Therefore,
we assume that the resistive losses due to the coupling loops
are negligible and we neglect . Also, for the samples we
considered, the modes in the cylindrical waveguide
sections were evanescent. Thus, we also assumeand
are also negligible. With these approximations, (43) reduces to

(44)

Thus, we obtain the sample loss tangent by taking the inverse
of the measured quality factor .

To verify the validity of the approximations made in (44),
we compared the loss-tangent measurements made in the split-
cylinder resonator to those made in the cylindrical cavity.
From Table III, we find good agreement between the two
methods for all four samples. This confirms our hypothesis
that a majority of the electromagnetic energy is stored in the
sample and almost all of the power is dissipated within the
sample.

As with the case of the sample permittivity, Table III
shows a comparison of loss-tangent measurements of the four
samples using the method described above and the theory
developed by Kent. The agreement between the two methods

(45)
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TABLE III
LOSS-TANGENT RESULTS FORFOUR LOW-LOSS DIELECTRIC SAMPLES. THE SAMPLES WERE MEASURED USING BOTH THE SPLIT-CYLINDER

RESONATOR AND THE CYLINDRICAL CAVITY . FOR THE SPLIT-CAVITY RESONATOR, WE SHOW LOSS-TANGENT RESULTS USING THE

NEW THEORY AND THE THEORY DEVELOPED BY KENT. THE TABLE ALSO SHOWS A COMPARISON BETWEEN SPLIT-CYLINDER

RESONATOR AND CYLINDRICAL CAVITY MEASUREMENTS INCLUDING THE COMBINED STANDARD UNCERTAINTIES IN tan �s

TABLE IV
ERROR SOURCES AND THEIR CONTRIBUTIONS TOWARDS THE COMBINED

STANDARD UNCERTAINTY IN �
0

rs
FOR SAMPLE S20

is good, and the results using the Kent theory fall well within
the uncertainty bounds of the method described in this paper.

V. UNCERTAINTY ANALYSIS

The uncertainty in includes errors due to the cavity
length and diameter, sample length, and resonant frequency.
We assume that each of these error sources are independent.
The combined standard uncertainty is shown in (45), at
the bottom of the previous page.

Solutions to the partial derivatives in (45) were found
numerically. Table IV shows the error sources along with
their contribution to the combined standard uncertainty in
for one of the samples measured. The largest contributions
of uncertainty come from the uncertainty in the cylindrical
waveguide radius and sample thickness. One should note
that the uncertainty in sample thickness was only 10
due to some sample machining. For materials without any
sample machining, one should expect the uncertainty in sample
thickness to be significantly higher and to be the largest source
of measurement uncertainty for . The uncertainties for all
the samples are shown in Table II and are on the order of those
found with in the cylindrical cavity.

In calculating the loss tangent , we made several
simplifying approximations, which made the loss tangent
calculable from the measured quality factor. If we neglect
the systematic uncertainties introduced by these simplifying
approximations, we can calculate the uncertainty in
from the uncertainty in the measured. For these sets of
measurements, we assume a 10% uncertainty in measured
[7]. The combined standard uncertainties in that result
are shown in Table III. The uncertainties in the cylindrical

cavity are higher because the losses in the cavity walls are
significant and cannot be neglected.

VI. CONCLUSIONS

Prior to this paper, the analysis of the split cylinder has been
based on a perturbation calculation to approximate the fringing
fields in the sample. Although the perturbation calculation
provided relatively accurate measurements, there remained
some systematic error in the determination of the sample
permittivity. The full-wave analysis presented in this paper re-
moves this systematic error by properly taking into account the
fringing fields in the sample region outside of the cylindrical
waveguide sections.

Using this model, we measured the sample permittivity
for four low-loss ceramic samples. For comparison, we mea-
sured the same samples in a cylindrical resonator and found
good agreement between the two sets of measurements. We
also include measurements of the sample loss tangent
derived from measurements of the split-cylinder resonator
quality factor. These values also compare well with those taken
in a cylindrical cavity.
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